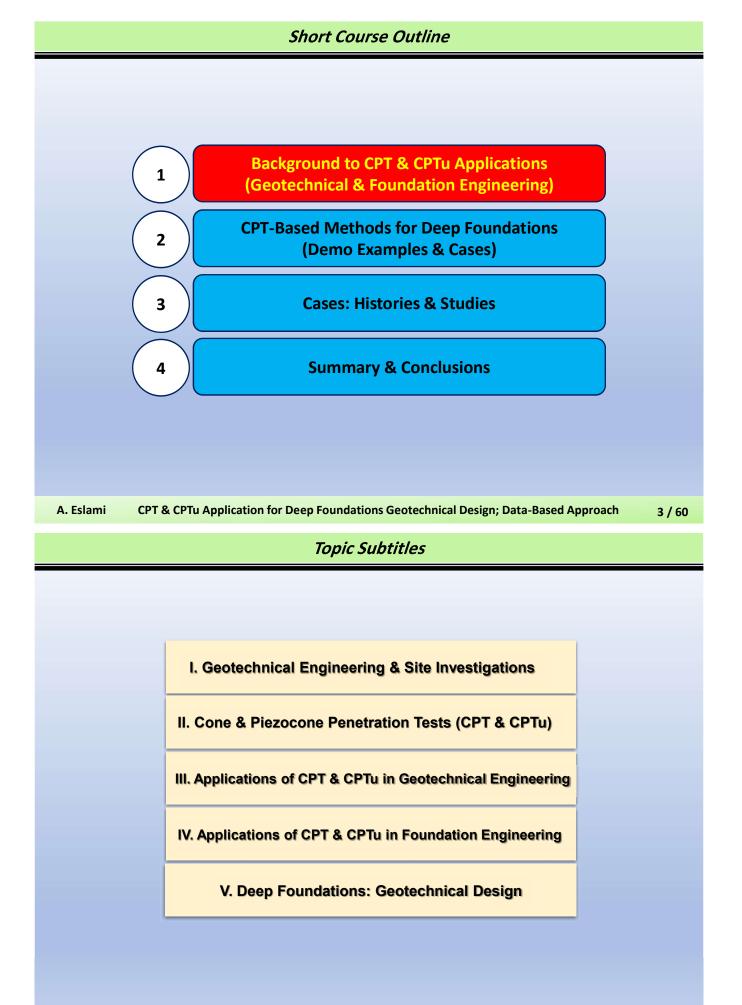
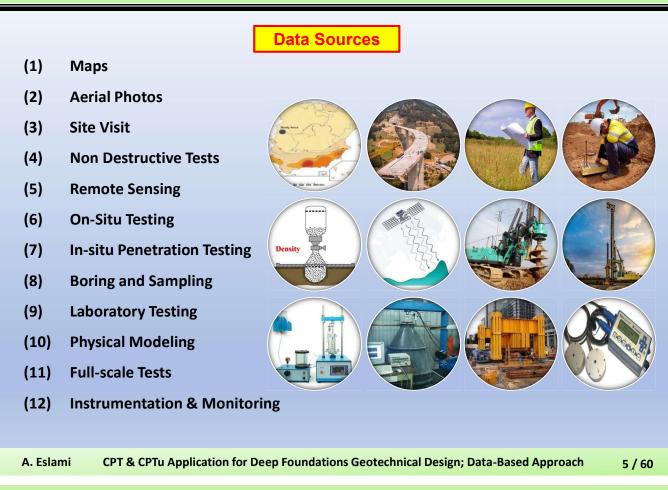

CPT & CPTu Application for Deep Foundations Geotechnical Design; Data-Based Approach

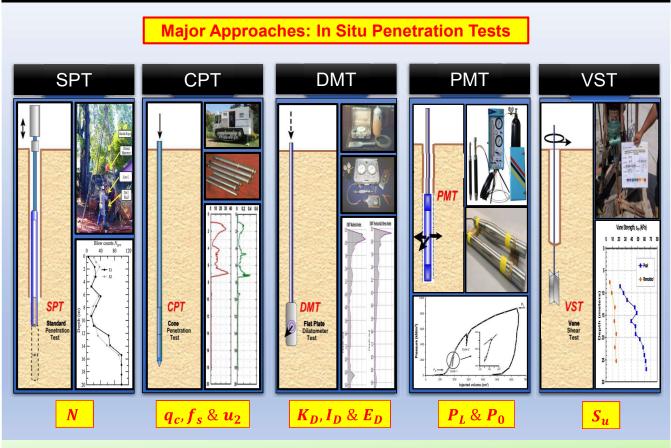
Short Course


Abolfazl Eslami, PhD

Professor & Private Geotechnical Consultant

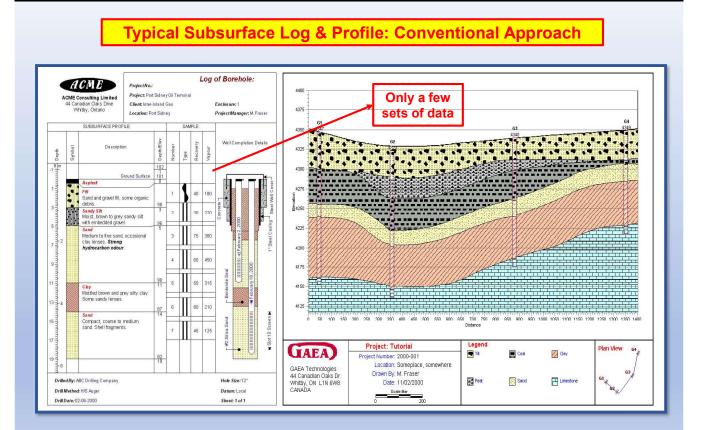


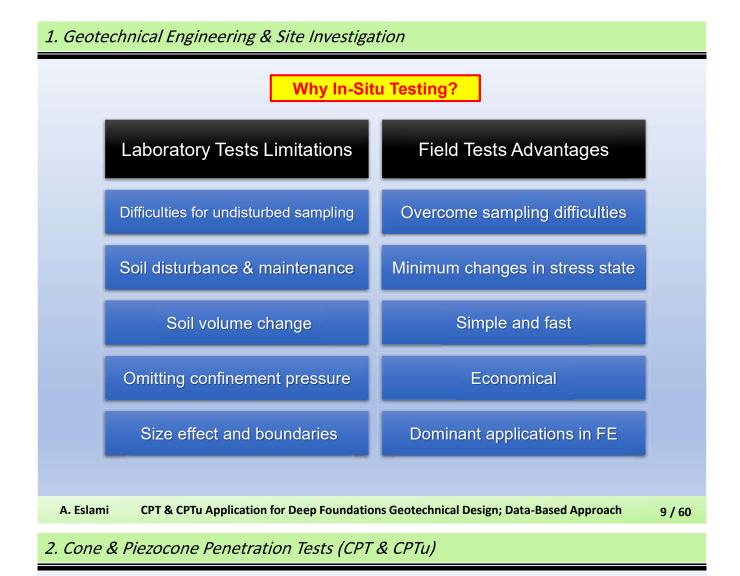



2 / 60

1. Geotechnical Engineering & Site Investigation

		Soil					Soil p								Hard	Soft		nd typ			
Group	Device	type	Profile	u	*ф'	$\mathbf{S}_{\mathbf{u}}$	ID	$\mathbf{m}_{\mathbf{v}}$	c _v	k	G ₀	б _h	OCR	б-е	rock	rock	Gravel	Sand	Silt	Clay	Pea
Penetro	Dynamic	С	в	-	С	С	С	-	-		С	-	С	-	-	С	в	А	в	в	в
meters	Mechanical	в	A/B		С	С	В	С		-	С	С	С	-		С	С	А	Α	Α	A
	Electric (CPT)	В	А		С	В	A/B	С	-		В	B/C	В	-		С	С	А	А	А	А
	Peizocone (CPTU)	А	А	А	В	в	A/B	В	A/B	В	в	B/C	В	С	-	С		А	А	А	А
	Seismic (SCPT/ SCPTU)	А	А	А	В	A/B	A/B	В	A/B	В	А	В	В	В	-	С	-	А	А	А	А
	Flat dilatometer (DMT)	в	А	С	в	в	С	в	-	-	в	в	в	С	С	С	-	А	А	А	А
	Standard penetration test (SPT)	Α	В	-	С	С	В	-	-	-	С	-	С	-	-	С	В	А	Α	А	A
	Resistivity probe	в	в	-	в	С	A	С	-	-		-	-	-	-	с	-	A	A	A	А
Pressure	Prebored (PBP)	в	в	-	С	в	С	в	С	-	в	С	С	С	A	А	в	В	в	А	в
meters	Self-boring (SBP)	в	в	A(1)	в	в	в	в	A(1)	в	A(2)	A/B	в	A/B(2)	_	в	-	в	в	А	в
	Full displace ment (FDP)	В	в	-	C	в	С	С	С	-	A(2)	С	С	С	-	С	-	В	в	А	А
Others	Vane	в	С	 	 -	А	-	-	-	-	i	i —	B/C	в	-	()	(—	-	[-]	A	в
	Plate load	С	-		С	в	в	в	С	С	A	С	в	в	в	А	в	в	в	А	A
	Screw plate	С	С	-	С	в	в	в	С	С	A	С	в	-	_	-	-	А	Α	А	А
	Borehole permeability	С		A	-	-	-	-	в	A	-	-	-	-	A	А	A	A	A	Α	в
	Hydraulic fracture	-	-	в	-	-	-	-	С	С	-	в	-	-	в	-	-	-	-	A	С
	Crosshole/ downhole/ surface seismic	С	С	-	-	-	-	-	-	-	A	-	В	-	Α	А	А	A	Α	A	Α

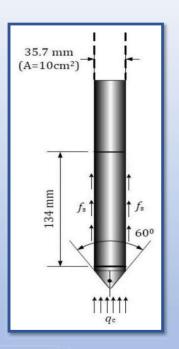

In-Situ Tests and Their Applicability


(Lunne et al., 1997)

A. Eslami CPT & CPTu Application for Deep Foundations Geotechnical Design; Data-Based Approach

7 / 60

1. Geotechnical Engineering & Site Investigation



CPT Device

CPT involves driving a system of a steel cone and rods into the ground, and recording the mobilized resistance to penetration in the soil.

- Simple and relatively economical.
- Continuous records with depth.
- Interpretable on both empirical and analytical bases.
- Sensors can be incorporated with penetrometer.
- ✤ A large experience-based knowledge is now available

CPT; mostly applicable in soft to medium, compressible & problematic deposits

2. Cone & Piezocone Penetration Tests (CPT & CPTu)

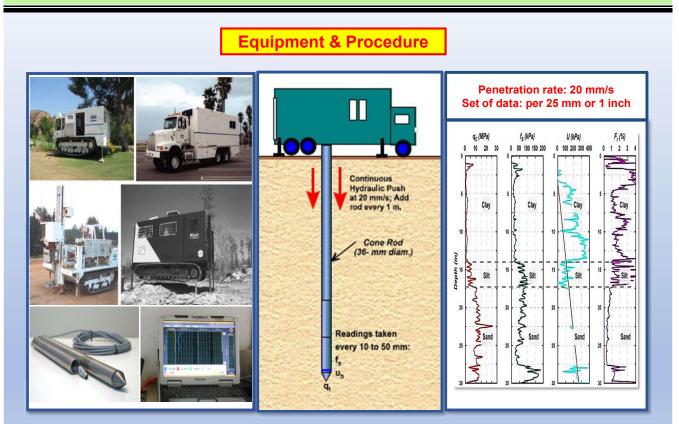
Cone Penetrometer (CPTu) Probes and Terminology

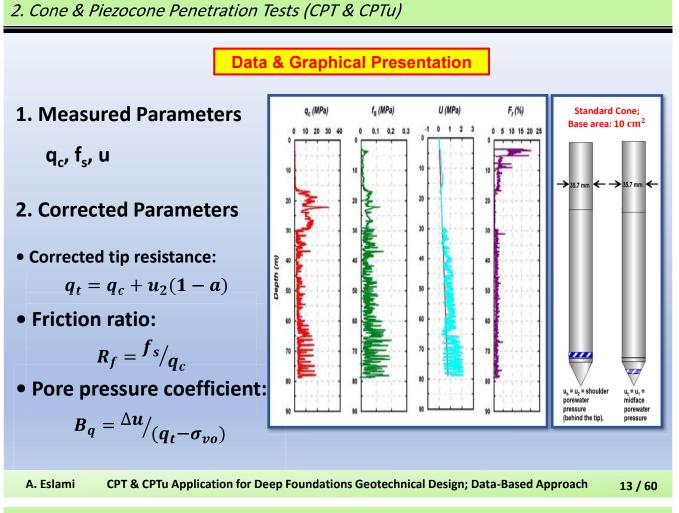
- ASTM D 5778 procedures
- No boring, No samples, No spoil
- Hydraulic Push at 20 mm/s
- Range of sizes:10 cm² and 15 cm² probes

Advantages:

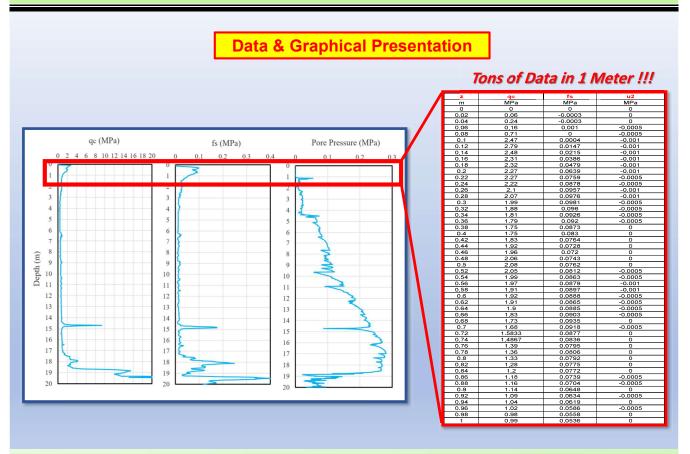
- Fast and continuous profiling
- Repeatable and reliable
- Continuous records of q_c, f_s, u per 2.5 cm
- Strong theoretical basis for interpretation

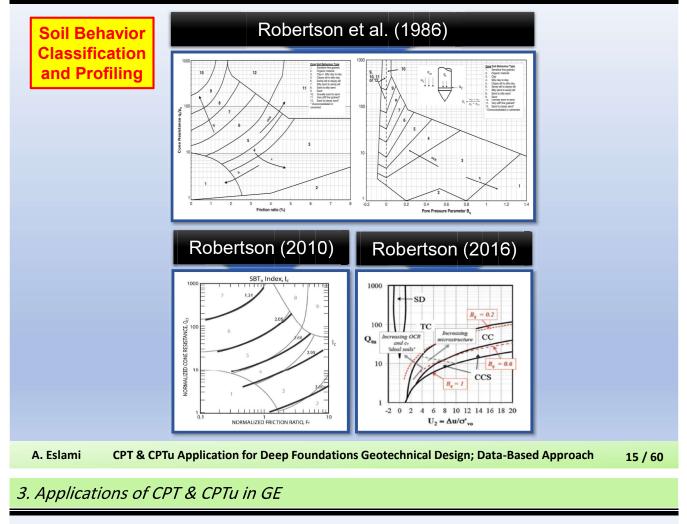
Disadvantages:

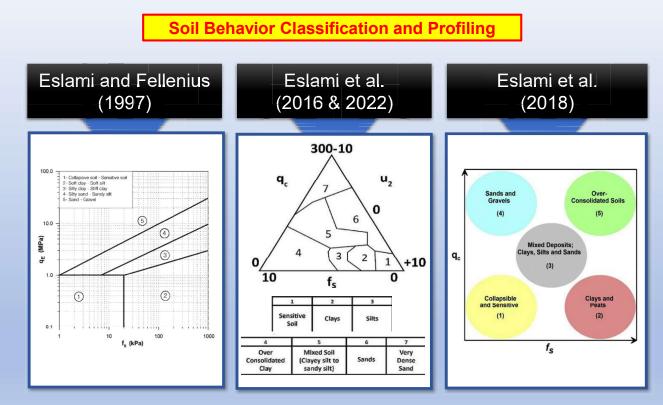

- High capital investment
- Requires skilled operators
- Limitation of use in gravel or cemented soils

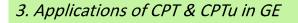


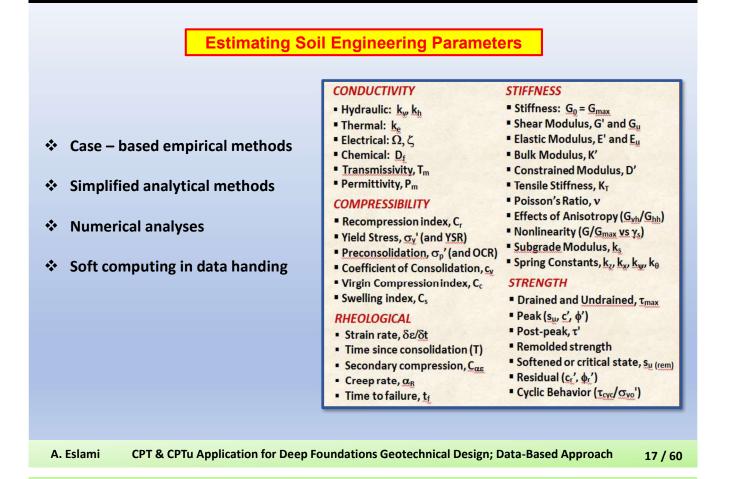
A. Eslami CPT & CPTu Application for Deep Foundations Geotechnical Design; Data-Based Approach 11 / 60


2. Cone & Piezocone Penetration Tests (CPT & CPTu)

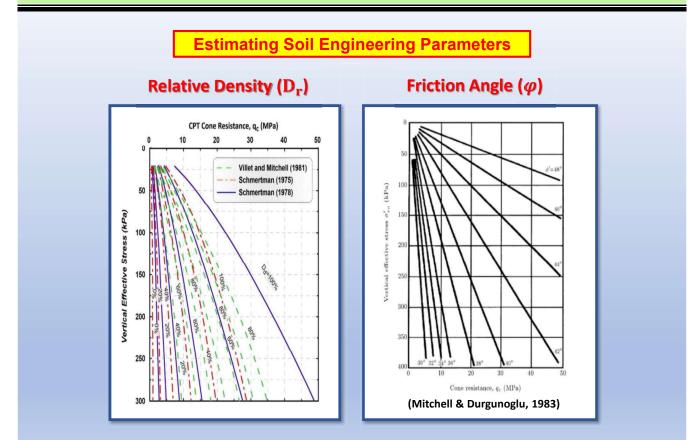

A. Eslami CPT & CPTu Application for Deep Foundations Geotechnical Design; Data-Based Approach 12 / 60

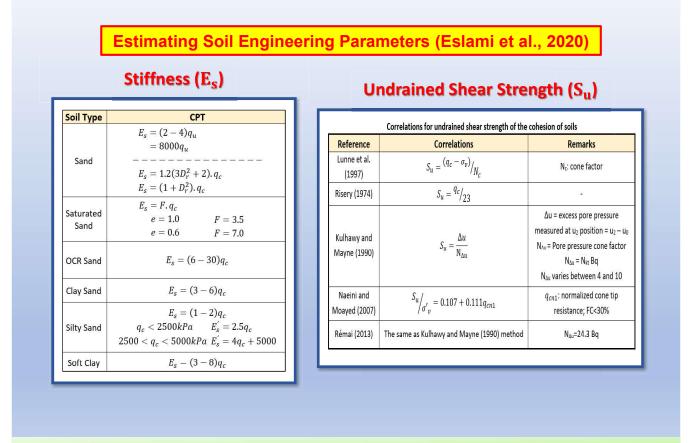


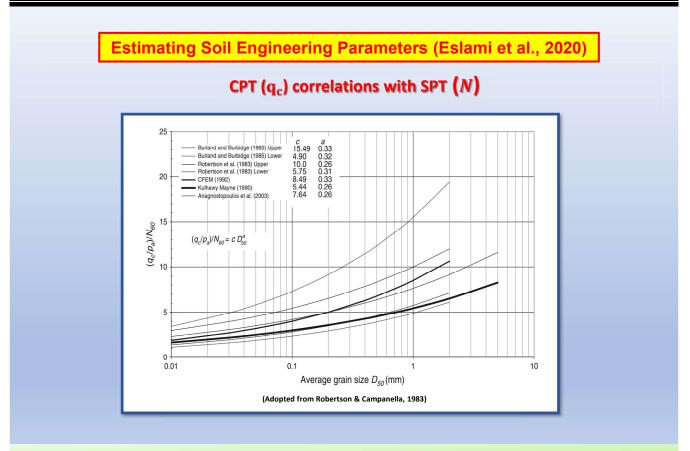


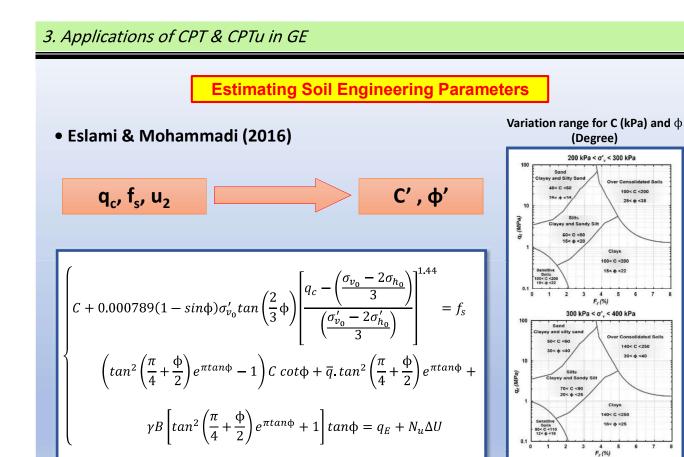


3. Applications of CPT & CPTu in GE



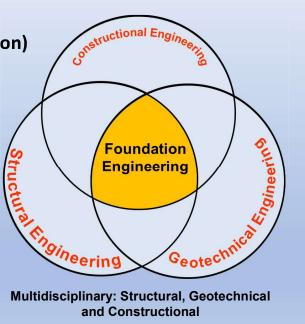


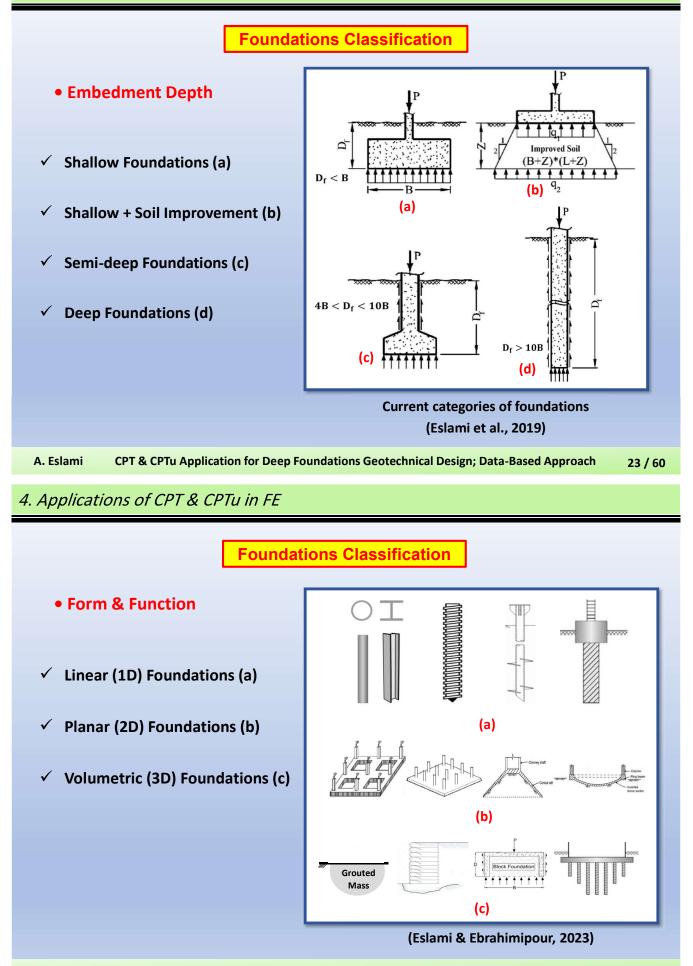

3. Applications of CPT & CPTu in GE



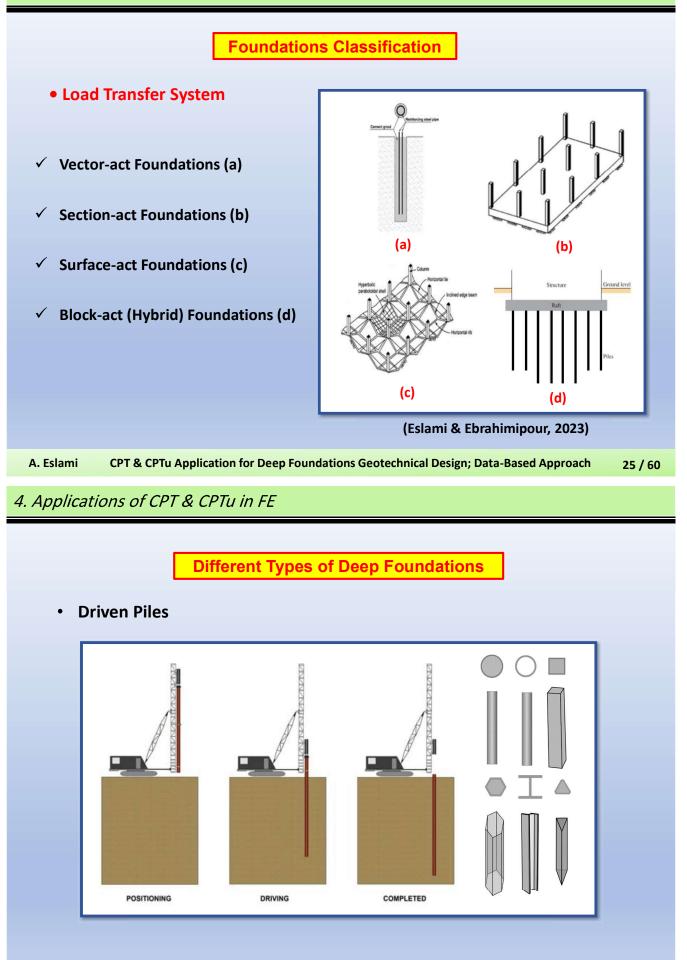
A. Eslami CPT & CPTu Application for Deep Foundations Geotechnical Design; Data-Based Approach 19 / 60

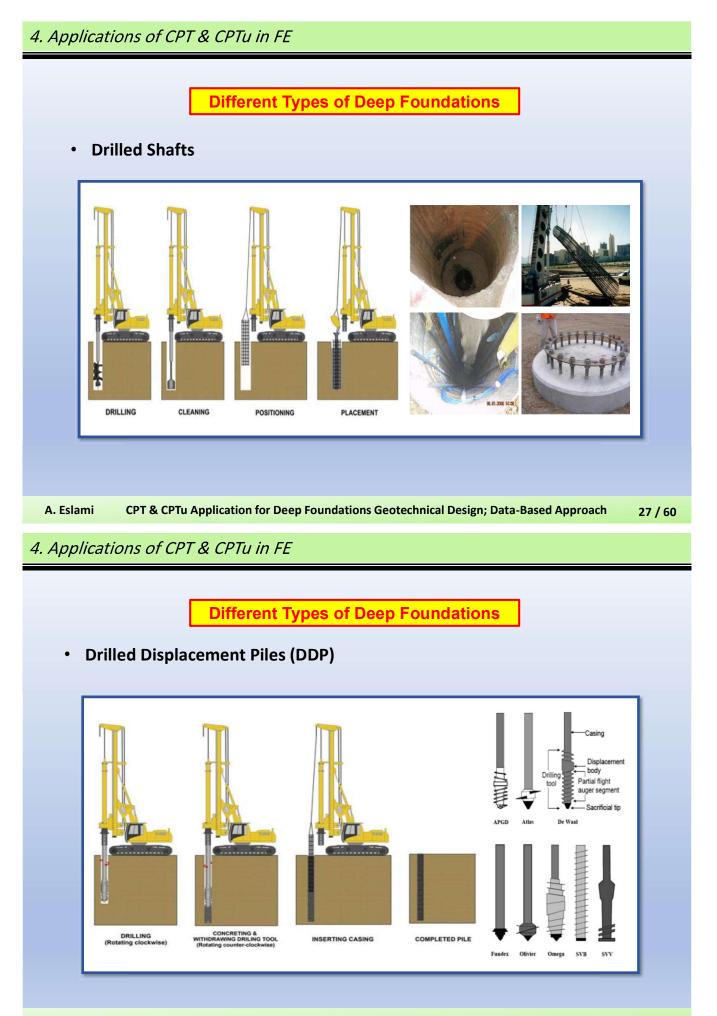
3. Applications of CPT & CPTu in GE



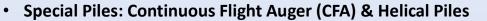

4. Applications of CPT & CPTu in FE

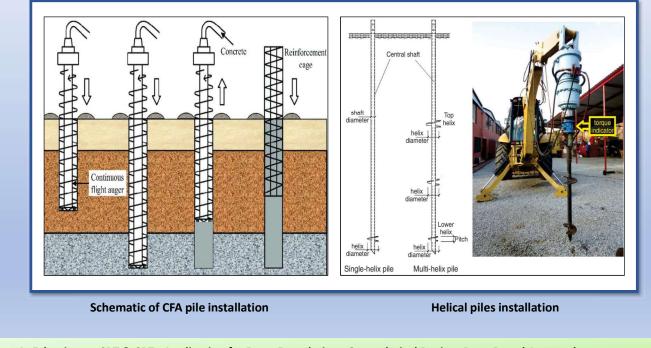
Major Analysis & Design Requirements


- 1. Bearing Capacity
- 2. Serviceability (Settlement and Torsion)
- 3. Structural Design
- 4. Stability Control
- 5. Full or Model Scale Testing
- 6. Constructional Aspects
- 7. Durability
- 8. Economic Requirements




Multidisciplinary: Structural, Geotechnical and Constructional


4. Applications of CPT & CPTu in FE

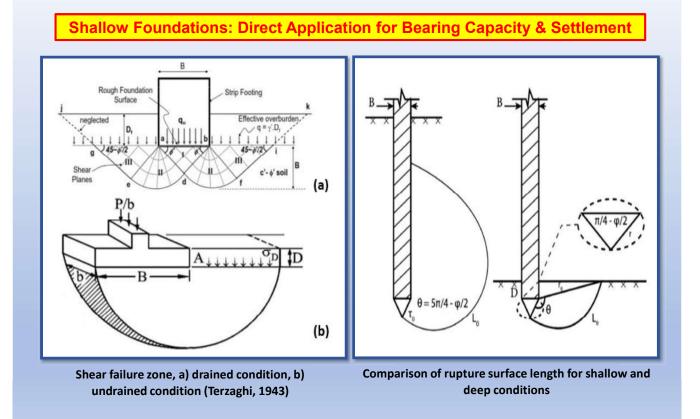


Different Types of Deep Foundations

A. Eslami CPT & CPTu Application for Deep Foundations Geotechnical Design; Data-Based Approach 29 / 60

4. Applications of CPT & CPTu in FE

Necessity & Requirements of Deep Foundations Construction


- 1. <u>Upper soil strata have low resistance</u>, so are unable to bear the superstructure transferred load, and soil layers with more resistance are found at lower depths. In other words, even if mats are used, the bearing capacity is not provided by surface layers.
- Despite resistant surface soil layers, there is a problem of "<u>scouring</u>," such as the scouring of structures adjacent to a beach.
- 3. <u>Large concentrated loads</u> should be transferred from the structure to the soil when the tolerance of these forces by shallow foundations, even mats, is impossible.
- 4. <u>The groundwater level is high</u>, or there is an artesian pressure in the soil layers, so it is impossible to construct shallow foundations.
- It is necessary to increase the hardness of soil under the machine foundations to control the amplitude of foundation vibrations and control the system's normal frequency.

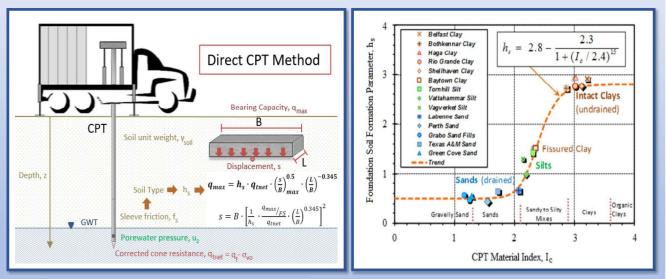
Necessity & Requirements of Deep Foundations Construction

- 6. If there is resistance to tensile or overturning forces below the surface, or it is required to prevent the overturning of high structures.
- 7. It is necessary to create restraint against lateral and earthquake forces.
- 8. There is a need to control landslides, increase slope stability as well as support against ground motion.
- 9. In cases where it is essential to provide sufficient pullout capacity plus external stability in particular for structures under combined loading (VMH).
- 10. It is essential to mitigate and control the seepage through the implementation of some barriers.
- 11. There is a need to enhance existing shallow foundations capacity through intrusion or confinement using deep-seated elements.

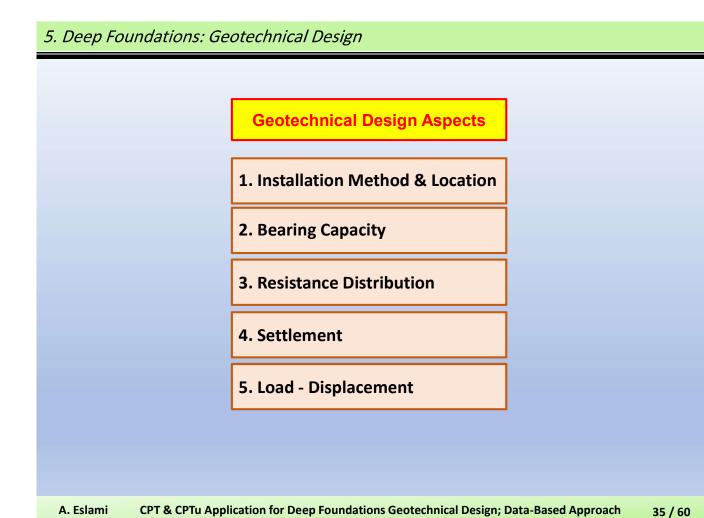
CPT & CPTu Application for Deep Foundations Geotechnical Design; Data-Based Approach A. Eslami 31 / 60

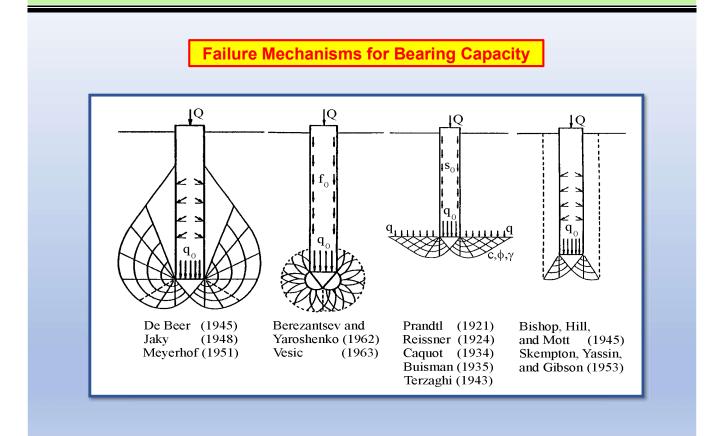
4. Applications of CPT & CPTu in FE

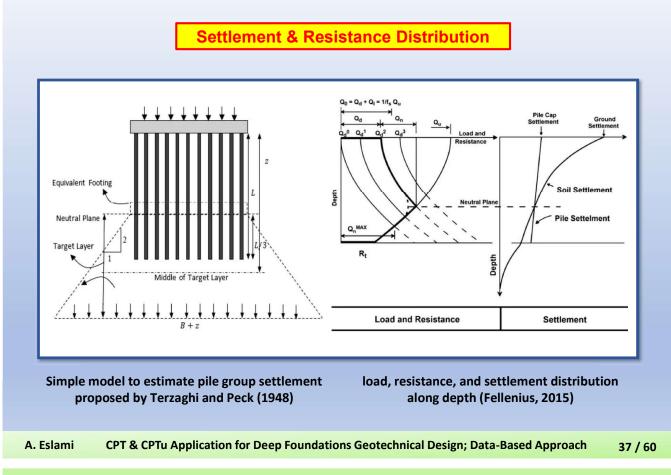
Shallow Foundations: Direct Application for Bearing Capacity & Settlement

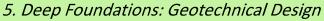

Reference	Equations	Remarks				
Schmertmann (1978)	$q_{ult} = \overline{q}N_q + 0.5\gamma BN_{\gamma}$ $N_q = N_{\gamma} = 1.25\sqrt{q_{c1} \times q_{c2}}$	q_{c1} = arithmetic average of q _c values in an interval between footing base and 0.5B beneath footing base. q_{c2} = arithmetic average of q _c values in an interval between 0.5B to 1.5B beneath footing base.				
Meyerhof (1976)	$q_{ult} = \bar{q}_c \left(\frac{B}{12.2}\right) \left(1 + \frac{D_f}{B}\right)$	\overline{q}_c = arithmetic average of q _c values in a zone including footing base and 1.5B beneath the footing. F.S. at least 3 is recommended				
Bowles (1996)	$\begin{array}{l} q_{ult} = 28 - 0.0052(300 - \overline{q}_c)^{1.5} \ , \\ & \mbox{for strip footings} \\ q_{ult} = 48 - 0.0052(300 - \overline{q}_c)^{1.5} \ , \\ & \mbox{for square footings} \end{array}$	\overline{q}_c = the arithmetic average of q_c values in an interval between footing base and 1.5B beneath, in terms of kg/cm ² .				
CFEM (2006)	$egin{array}{ll} q_{ult} = 0.30 \ \overline{q}_c \ q_{all} = 0.10 \ \overline{q}_c \end{array}$	a safety factor of 3 has been suggested				
Tand et al. (1994)	$q_{ult} = R_k q_c + \sigma_{\nu 0}$	R_k values range from 0.14 to 0.2, depending on the footing shape and depth, and σ_{v0} is the initial vertical stress at the footing base.				
Eslami and Gholami (2006)	$\varphi = \frac{q_{ult} = \overline{\alpha} \times \overline{q}_{cg}}{\frac{\log\left(\frac{\overline{q}_c}{\gamma z}\right) + 0.5095}{0.0915}}$	$\overline{q}_{c,g}$ = geometric average of q_c values from footing base to 2B beneath footing depth.				

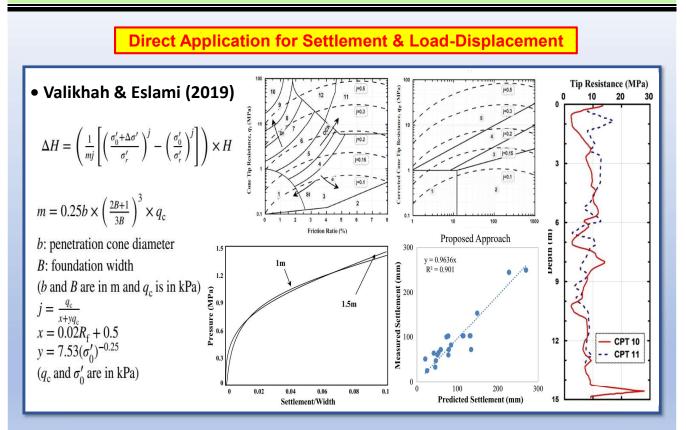
A. Eslami CPT & CPTu Application for Deep Foundations Geotechnical Design; Data-Based Approach 33 / 60

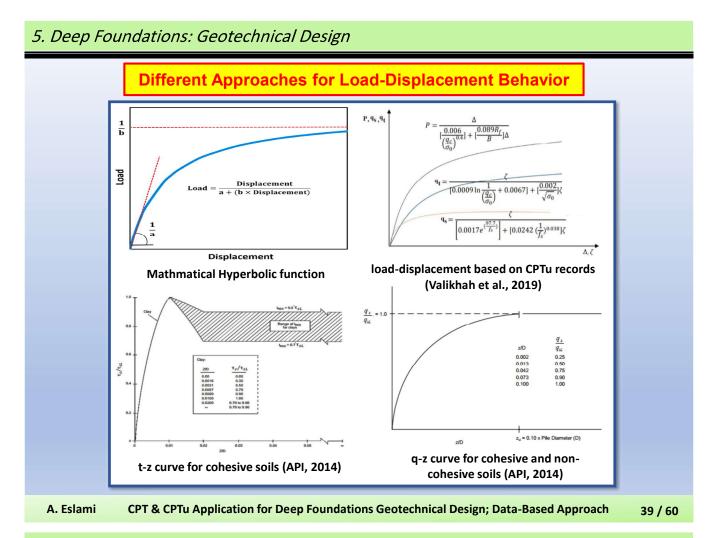

4. Applications of CPT & CPTu in FE

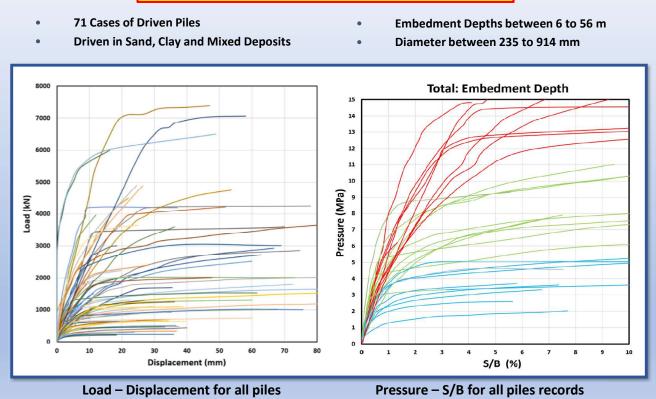

• Minnesota CPT Design Guide (2018)




Foundation soil formation parameter h_s versus CPT material index, I_c (Mayne, 2017)

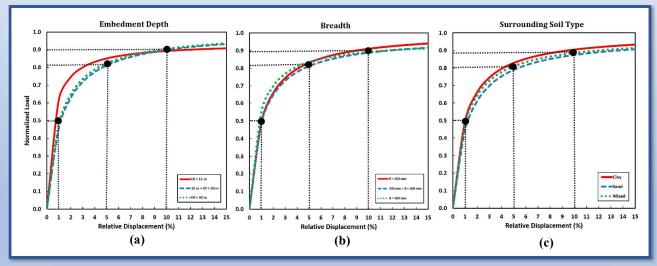



5. Deep Foundations: Geotechnical Design



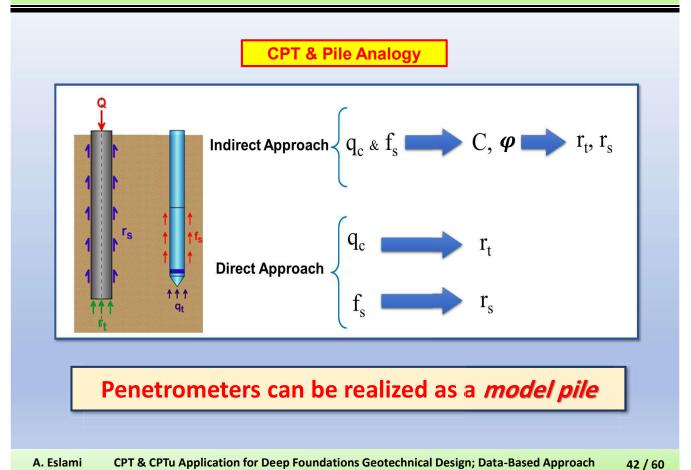
5. Deep Foundations: Geotechnical Design

A. Eslami

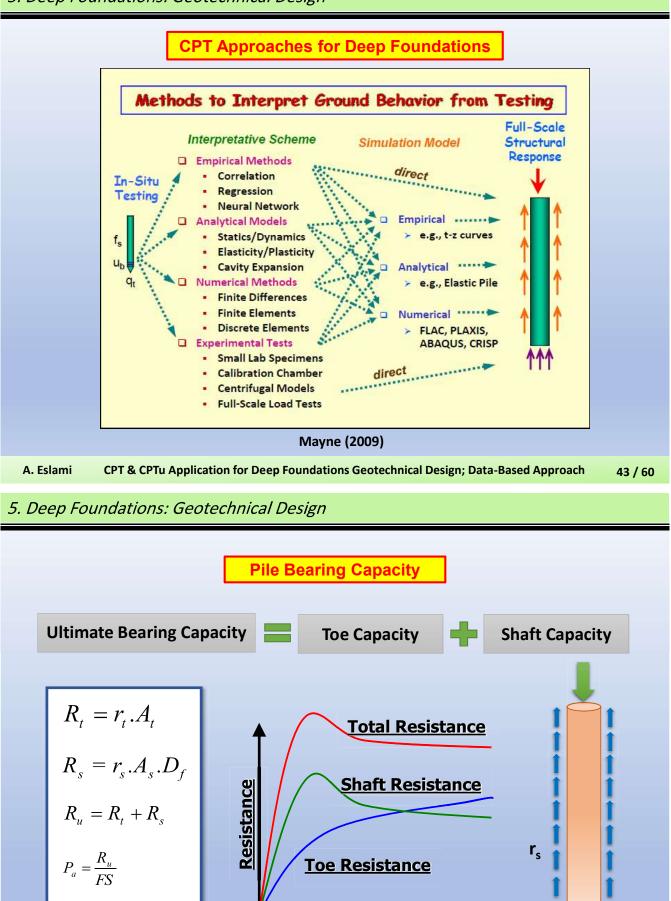

Load-Displacement Behavior of Driven Piles

Normalization Approach:

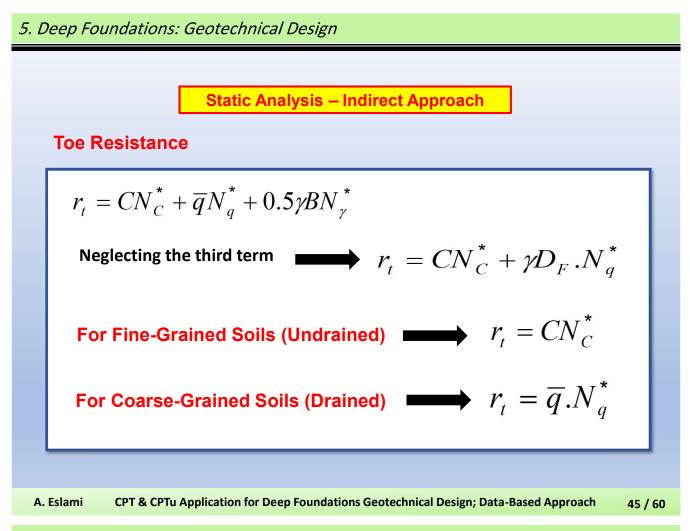
Relative Displacement & Normalized Load:

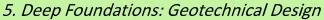

- Load: Brinch-Hansen 80% (1963)
- Displacement: Breadth

- 1% \rightarrow 0.5 Pu (FS=2)
- 5% \rightarrow 0.8 Pu
 - 10 % \rightarrow 0.9 Pu


Normalized hyperbolic trending of load-displacement for dominant factors: a) embedment depth, b) breadth, c) surrounding soil type (Eslami & Ebrahimipour, 2024)

5. Deep Foundations: Geotechnical Design


A. Eslami CPT & CPTu Application for Deep Foundations Geotechnical Design; Data-Based Approach 41 / 60


5. Deep Foundations: Geotechnical Design

Vertical Displacement

r,

Static Analysis – Indirect Approach

Shaft Resistance

Effective stress analysis (ESA)

$$\mathbf{r}_{s} = \beta \boldsymbol{\sigma}_{v}'$$
$$\boldsymbol{\beta} = K \cdot \tan \delta$$
$$\mathbf{i}$$

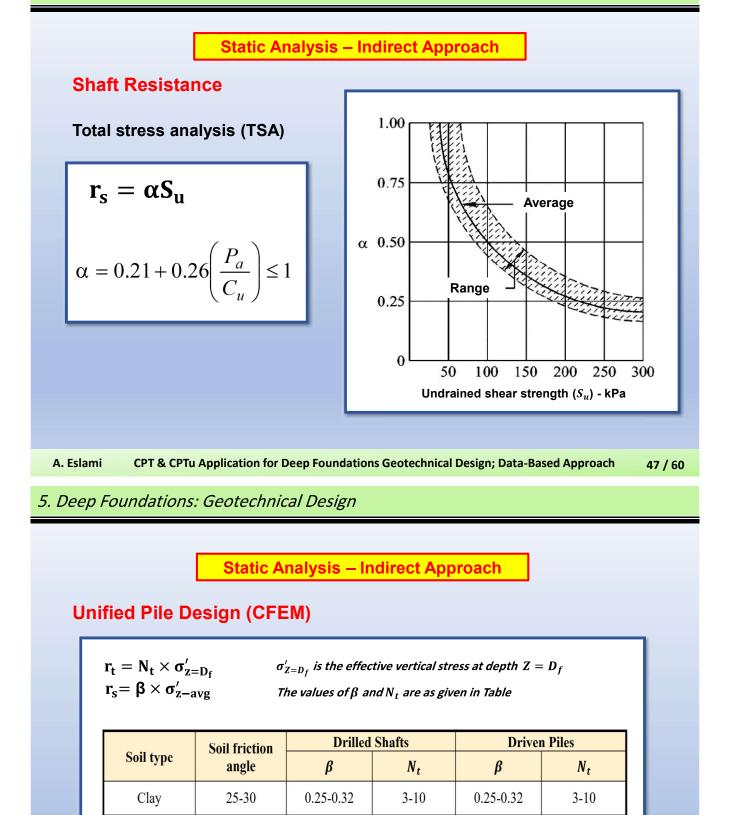
Pile type	K/K	, Construc	ction method (Bored piles)	K/K _o			
Jetted piles $1/2 \sim 2/3$			Dry construction with minimal sidewall disturbance and prompt concreting				
Drilled shaft, 2/3 ~ I cast-in-place		Slurry constr	Slurry construction—good workmanship				
Driven pile, small 3/4 ~ 5/4 displacement		4 Slurry constr	Slurry construction—poor workmanship				
Driven pile, large displacement	I ~ 2	Casing under	water	5/6			
References	(Kulhaw) 1984)	y (Reese and C)'Neill 1989)				
			Construction method				
Pile material		δ/φ′	(Bored piles)	δ/φ'			
Rough concrete (cast-in-place)		1.0	Open hole or temporary casing	1.0			
Smooth concrete (precast)		0.8~1.0	Slurry method—minimal slurry cake	1.0			
Rough steel (corrugated)		0.7~0.9	Slurry method—heavy slurry cake	0.8			
Smooth steel (coa	ated)	0.5~0.7	Permanent casing	0.7			
Timber (pressure-treated)		0.8~0.9	-				
Timber (pressure-	-created)	010 011					

Wei Dong Guo (2012)

Silt

Loose sand

Medium sand


Dense sand

Gravel

28-34

32-42

35-45

10-30

20-30

30-60

50-100

80-150

0.3-0.5

0.3-0.8

0.6-1

0.8-1.2

0.8-1.5

20-40

30-80

50-120

100-120

150-350

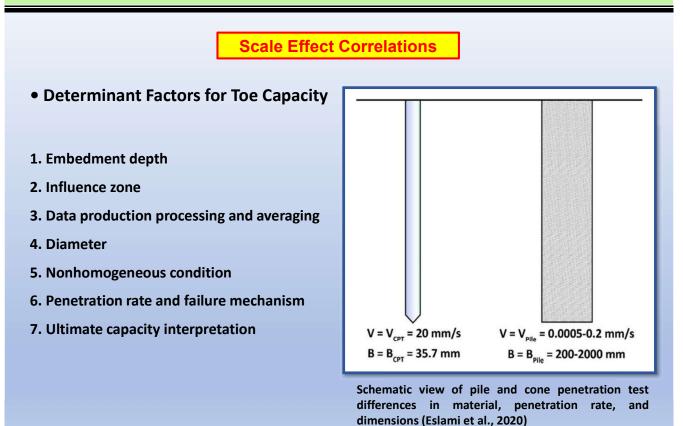
0.2-0.3

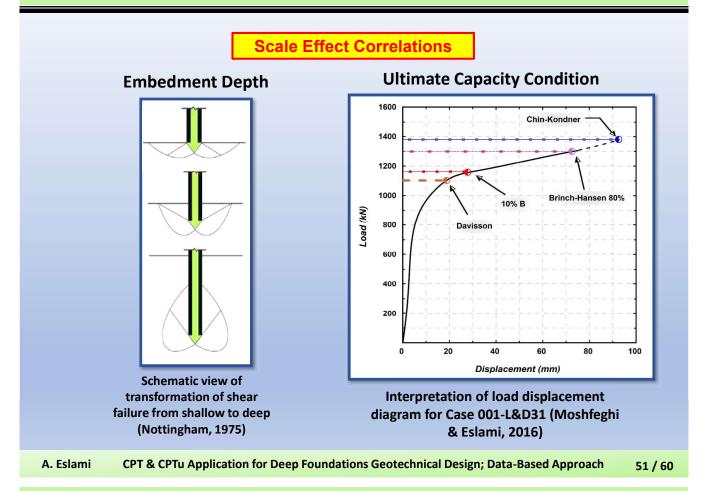
0.2-0.4

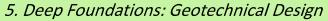
0.3-0.5

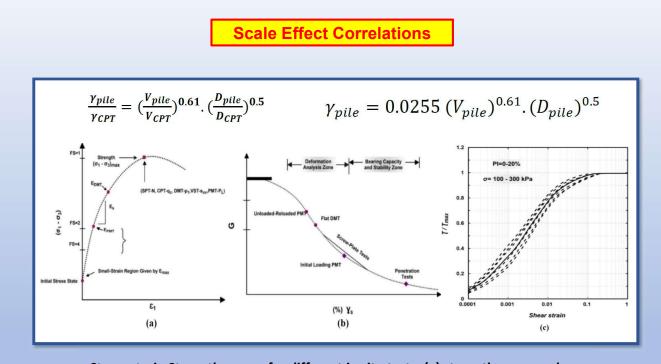
0.4-0.6

0.4-0.7

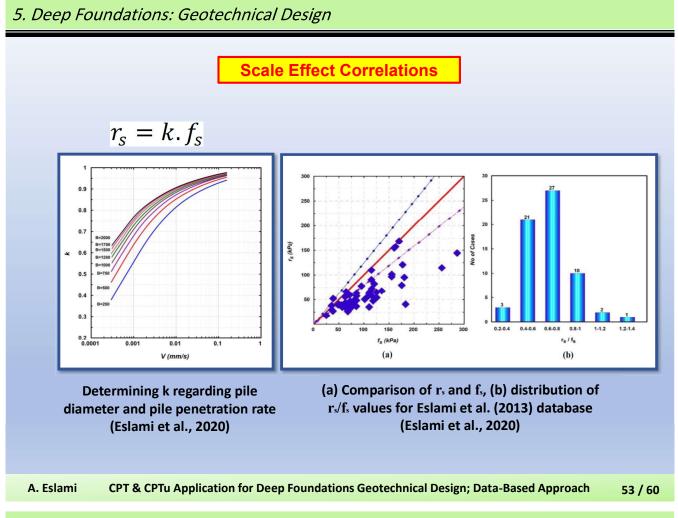

API (2011)	Relative Density*	Soil Description	β	Limiting Shaft Friction Values (kPa)	Nq	Limiting End Bearing Values (MPa)
For cohesive soils	Very loose	Sand	_	_		_
	Loose	Sand	Not applicable ^d	Not applicable ^d	Not applicable ^d	Not applicable ^d
$r_t = 9S_u$	Loose	Sand-silt ^b	ot appl	ot appl	ot appl	ot appl
_	Medium dense	Silt	Ž	Ż	ž	Ž
$r_{\rm s} = \alpha S_{\rm u}$	Dense	Silt				
For $\Psi \leq 1 \ o \ lpha = 0.5 \Psi^{-0.5}$	Medium dense	Sand-silt ^b	0.29	67	12	3
For $\Psi > 1 \rightarrow \alpha = 0.5\Psi^{-0.25}$ with the constraint that $\alpha \le 1$	Medium dense	Sand	0.37	81	20	5
	Dense	Sand-silt ^b				
$\Psi = rac{s_u}{p_0'\left(z ight)}$, $p_0'\left(z ight)$ = effective stress at depth z	Dense	Sand	0.46	96	40	10
	Very dense	Sand-silt ^b				
	Very dense	Sand	0.56	115	50	12
For cohesionless soils		ion such as CPT	records, s	uidelines only. Other value trength tests on high-quali rrformance, is available.		
$\mathbf{r_t} = \mathbf{N}_q imes \mathbf{\sigma}'_{\mathbf{z} = \mathbf{D}_f} \ \mathbf{r_s} = \mathbf{\beta} imes \mathbf{\sigma}'_{\mathbf{z} - \mathbf{avg}}$	a: The	definitions for th	ne relative	density percentage descrip	ption are	e as follows:
$\mathbf{r_s} = \mathbf{\beta} \times \mathbf{\sigma'_{z-avg}}$	Very loose,	0-15; Loose, 15-	35; Medi	um dense, 35-65; Dense, 6	5-85; Ve	ery dense, 85-100.
				nt fractions of both sand a tions and decrease with inc		
				tions for these soil/relative recommended to use CPT-		


Static Analysis – Indirect Approach


A. Eslami CPT & CPTu Application for Deep Foundations Geotechnical Design; Data-Based Approach


49 / 60

5. Deep Foundations: Geotechnical Design



Stress strain Strength curves for different in situ tests; (a) strength measured by in situ tests at the peak of the stress strain curve, (b) variation of shear modulus with strain level (c) Variation of shear stress with shear strain (Sabatani et al., 2002)

5. Deep Foundations: Geotechnical Design

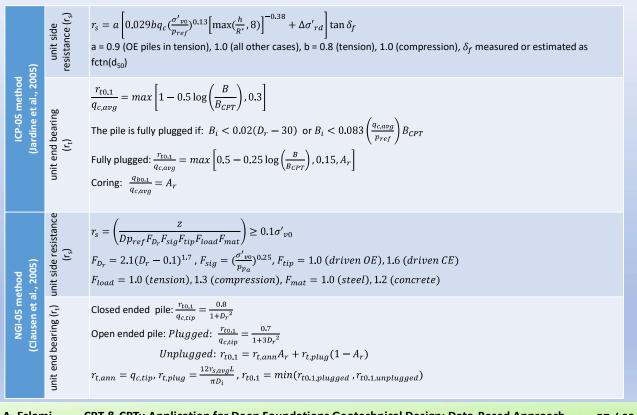
Direct Application for Deep Foundations Axial Capacity

List of common CPT- and CPTu-based methods for pile bearing capacity

No.	Method/ Reference	No.	Method/ Reference
1	Begemann (1963, 1965, 1969)	15	Fugro-05 (Kolk et al. 2005)
2	Meyerhof (1956, 1976, 1983)	16	UCD-05 (Gavin and Lehane 2005)
3	Aoki and Velloso (1975)	17	ICP-05 (Jardine et al. 2005)
4	Nottingham (1975), Schmertmann (1978)	18	UWA-05 (Lehane et al. 2005)
5	Penpile (Clisby et al.1978)	19	NGI-05 (Clausen et al. 2005)
6	Dutch (de Ruiter & Beringen 1979)	20	Cambridge-05 (White & Bolton 2005)
7	Philipponnat (1980)	21	Togiliani (2008)
8	LCPC (Bustamante & Gianeselli 1982)	22	German (Kempfert and Becker 2010)
9	Cone-m (Tumay & Fakhroo 1982)	23	UCD-11 (Igoe et al. 2010, 2011)
10	Price and Wardle (1982)	24	V–K (Van Dijk and Kolk 2011)
11	Gwizdala (1984)	25	SEU (Cai et al. 2011, 2012)
12	UniCone (Eslami & Fellenius 1997)	26	HKU (Yu and Yang 2012)
13	KTRI (Takesue et al. 1998)	27	UWA-13 (Lehane et al. 2013)
14	TCD-03 (Gavin and Lehane 2003)	28	Modified UniCone (Niazi and Mayne 2016)

Method/references	Pile unit side resistance (r _s)	Pile unit end bearing (r _t)
Meyerhof (1976)	$r_s = kf_s$ k = 1 $r_s = cq_c$ c = 0.5%	$\begin{aligned} r_t &= q_{c.a} c_1 c_2 \\ c_1 &= \left(\frac{B+0.5}{2B}\right)^n, c_2 = \frac{D_b}{10B} \\ D_b \ bearing \ embed ment \ depth \\ n &= 1 \ (loose), 2 \ (medium \ dense), 3 \ (dense) \end{aligned}$
.CPC Bustamante and Gianeselli, 1982)	$r_s = \frac{1}{k_s} q_c$ $k_s = 30 - 150$	$r_t = k_b q_{eq}$ $k_b = 0.4 \sim 0.55$
Dutch method de Ruiter and Beringen L979)	Compression: $r_s = \min[f_s, \frac{q_c}{300}, 120 \ kPa]$ Tension: $r_s = \min[f_s, \frac{q_c}{400}, 120 \ kPa]$	Similar to Nottingham (1975) and Schmertmann (1978)
Nottingham (1975) Schmertmann (1978)	$r_{s} = C_{s}q_{c}$ $r_{s} = Kf_{s}$ $C_{s} = 0.8 \sim 1.8\%$, $K = 0.8 \sim 2(sand)$	$r_t = q_{ca}$
Jnicone Eslami and Fellenius, L997)	$r_s = c_{se} \times q_E$ $q_E = q_t - u_2$ $c_{se} = 0.3 \sim 8\%$	$r_t = c_{te} \times q_{Eg}$ $q_{cg} = (q_{c1} \times q_{c2} \times q_{c3} \times \dots \times q_{cn})^{\frac{1}{n}}$ $c_{te} = 1$

A. Eslami CPT & CPTu Application for Deep Foundations Geotechnical Design; Data-Based Approach


55 / 60

5. Deep Foundations: Geotechnical Design

		Summary of Commonly Used CPT-Based Methods
UWA-05 method Lehane et al., 2005)	e resist (rs)	$\begin{split} r_{s} &= \frac{f_{t}}{f_{c}} \Bigg[0.03q_{c}A_{rs,eff} ^{0.3} \Bigg[\max\left(\frac{h}{B},2\right) \Bigg]^{-0.5} + \Delta\sigma'_{rd} \Bigg] \tan \delta_{f} \\ A_{rs,eff} &= 1 - IFR\left(\frac{B_{i}}{B}\right)^{2}, \frac{f_{t}}{f_{c}} = 1 \text{ in compression, 0.75 in tension} \\ IFR_{mean} &\approx \min\left[1, \left(\frac{B_{i}(m)}{1.5(m)}\right)^{0.2} \right] \end{split}$
UW/ (Lehar	unit end bearing (r _t)	$\begin{aligned} \frac{r_{t0.1}}{q_{c,avg}} &= 0.15 + 0.45 A_{rb,eff} \\ A_{rb,eff} &= 1 - FFR\left(\frac{B_i^2}{B^2}\right), FFR \approx min\left[1, \left(\frac{B_i(m)}{1.5(m)}\right)^{0.2}\right] \end{aligned}$
Fugro-05 method (Kolk et al., 2005)	unit end bearing unit side resistance (r_s) (r_t)	$\begin{array}{l} \text{Compression Loading: } h/R^* \geq 4: r_s = 0.08 q_c \left(\frac{\sigma'_{v0}}{p_{ref}}\right)^{0.05} \left(\frac{h}{R^*}\right)^{-0.90} \\ h/R^* \leq 4: r_s = 0.08 q_c \left(\frac{\sigma'_{v0}}{p_{ref}}\right)^{0.05} (4)^{-0.90} \left(\frac{h}{4R^*}\right) \end{array}$ $\begin{array}{l} \text{Tension Loading: } r_s = 0.045 q_c \left(\frac{\sigma'_{v0}}{p_{ref}}\right)^{0.15} \left(\max(\frac{h}{R^*}, 4)\right)^{-0.85} \end{array}$
Fugro- (Kolk e	unit end bearing (r _t)	$r_{t0.1} = 8.5q_{c,avg} \left(\frac{p_{ref}}{q_{c,avg}}\right)^{0.5} A_r^{-0.25}$ $A_r = 1 - \left(\frac{B_i^2}{B^2}\right)$

5. Deep Foundations: Geotechnical Design

A. Eslami CPT & CPTu Application for Deep Foundations Geotechnical Design; Data-Based Approach 57 / 60

5. Deep Foundations: Geotechnical Design

Comments on the Current CPT-Based Methods for Pile Design

- The methods developed in 70s and 80s do not consider the more accurate measurements achievable by CPTu, since, it was before the piezocone was generally available.
- While the recommendations are specified to soil type (clay and sand) for a few methods, none of them, except for Eslami and Fellenius (1997) and enhanced UniCone (Niazi and Mayne, 2016), include a means for identifying the soil type from CPT data. Instead, the soil profile governing the coefficients relies on information from conventional boring and sampling, and laboratory testing, which may not be fully relevant to the CPT data.
- All of the CPT-based methods include random smoothing and filtering of the CPT data, that is, elimination of peaks and troughs that exposes the results to considerable subjective operator influence.

Comments on the Current CPT-Based Methods for Pile Design

- The cone resistance (total resistance) has not been corrected for the pore pressure on the cone shoulder and, therefore, the data behind the methods include errors—smaller in sand, larger in clay. This matter, i.e., penetration pore pressure, u_2 , is realized by Eslami and Fellenius (1997).
- Most of the older methods employ total stress values, whereas in long term, effective stress governs pile capacity.
- Some of the methods are locally developed, that is, they are based on limited types of piles and soils,
- The upper limit resistance imposed on the unit toe resistance in the Schmertmann is not reasonable in very dense sands where values of pile unit toe resistance, r_t , higher than 15 MPa frequently occur.
- Most of the direct methods involve a judgment in selecting the coefficient to apply to the average cone resistance to arrive at the unit toe resistance.

A. Eslami CPT & CPTu Application for Deep Foundations Geotechnical Design; Data-Based Approach 59 / 60

5. Deep Foundations: Geotechnical Design

Comments on the Current CPT-Based Methods for Pile Design

- Some methods such as Eslami and Fellenius (1997), NGI (2005), ICP (2005), UWA (2005), specify a certain criterion for evaluating the pile capacity from static loading test results that can be used as reference to the pile capacity estimated from CPT data. While, other methods have not introduced any criteria for pile ultimate capacity. Yet, the capacity of a pile is determined from the results of static loading tests, varies considerably with the method used to evaluate the test (Fellenius, 1975).
- The NGI (2005), ICP (2005), Fugro (2005), and UWA (2005) methods are included in the commentary of the new 22nd edition of the API RP 2A Recommendations (2006) and are applicable for displacement piles in sand. They are more or less following a similar format. For instance, they all consider the effects of friction fatigue and toe condition in open end piles. Also, except for the Fugro method, the dilation effects during pile loading are accounted.